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Abstract

A nonlinear bending analysis is presented for a Reissner–Mindlin plate with four free edges subjected to thermo-

mechanical loads and resting on a tensionless elastic foundation of the Pasternak-type. The mechanical loads consist of

transverse partially distributed loads and in-plane edge loads while the temperature field is assumed to exhibit a linear

variation through the thickness of the plate. The material properties are assumed to be independent of temperature. The

two cases of initially compressed plates and of initially heated plates are considered. The formulations are based on

Reissner–Mindlin first order shear deformation plate theory and include the plate-foundation interaction and thermal

effects. A set of admissible functions, which satisfy both geometrical and natural boundary conditions, are developed

for the nonlinear bending analysis of moderately thick plates with four free edges. A two step perturbation technique is

employed in conjunction with this set of admissible functions to determine the load-deflection and load-bending mo-

ment curves. An iterative scheme is developed to obtain numerical results without using any prior assumption for the

shape of the contact region. The numerical illustrations concern moderately thick plates with four free edges resting on

tensionless elastic foundations of the Pasternak-type, from which results for conventional elastic foundations are ob-

tained as comparators. The results show that the nonlinear bending responses for the conventional and tensionless

elastic foundation are quite different.
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1. Introduction

The nonlinear bending response of initially heated or initially compressed Reissner–Mindlin plates with

four free edges subjected to transverse partially distributed loads and resting on a two-parameter elastic

foundation was the subject of recent investigations (Shen, 1998b, 1999). In these studies the foundation is
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assumed to be an attached foundation in which the plate cannot separate from the elastic medium, this

means the foundation reacts in compression as well as in tension. However, the lift-off problem of a plate is

much more plausible, when the edge of the plate is free.

Many linear bending studies for thin and moderately thick, circular and rectangular plates resting on a
tensionless elastic foundation have been performed by Weitsman (1970), Villaggio (1983), Celep (1988a,b),

Li and Dempsey (1988), Mishra and Chakrabarti (1996), Akbarov and Kocat€urk (1997), Xiao (2001) and

Silva et al. (2001). The solution method required to determine the response of such plates on tensionless

foundations is complicated because the contact region is not known at the outset. All the aforementioned

studies focused on the cases of linear bending problem and they concluded that the contact region remains

constant and is independent of the load level. In contrast, Khathlan (1994) studied the large deflections of

circular plates resting on a tensionless elastic foundation of the Winkler-type and concluded that as the

transverse load increases the contact area tends to expand until full contact is reached. Hong et al. (1999)
studied the large deflections of axisymmetric shells and circular plates subjected to a central concentrated

load and resting on a tensionless elastic foundation. However, in these studies the formulations are based

on the Kirchhoff–Love hypothesis and therefore the transverse shear deformations are not accounted for.

The present study extends the previous works (Shen, 1998b, 1999) to the case of moderately thick

rectangular plates with four free edges resting on a tensionless elastic foundation of the Pasternak-type. The

nonlinear bending behaviors of initially compressed or initially heated plates are re-examined. The

mechanical loads consist of transverse partially distributed loads and in-plane edge loads while the tem-

perature field is assumed to exhibit a linear variation through the thickness of the plate. The material
properties are assumed to be independent of temperature. The formulations are based on Reissner–Mindlin

first order shear deformation plate theory and include the plate-foundation interaction and thermal effects.

A set of admissible functions, which satisfy both geometrical and natural boundary conditions, are

developed for the nonlinear bending analysis of moderately thick plates with four free edges. A two step

perturbation technique is employed in conjunction with this set of admissible functions to determine the

load-deflection and load-bending moment curves. An iterative scheme is developed to obtain numerical

results without using any prior assumption for the shape of the contact region.
2. Analytical formulations

Consider a rectangular thick plate with four free edges of length a, width b and thickness t, which rests

on a tensionless elastic foundation. Let X , Y and Z be a set of coordinates with X and Y axes located in the

middle plane of the plate and the Z-axis pointing downwards. The origin of the coordinate system is located

at the center of the plate in the middle plane. The plate is exposed to a stationary temperature field

T ðX ; Y ; ZÞ and/or transverse partially distributed load q in the shaded region, as shown in Fig. 1, combined

with in-plane edge loads Px in the X -direction and Py in the Y -direction. The components of displacement of

the middle surface along the X , Y and Z axes are designated by U , V and W . Wx and Wy are the mid-plane

rotations of the normals about the Y and X axes, respectively. The foundation is represented by a two-
parameter foundation model, that is, the reaction of the foundation is assumed to be p ¼ K1W � K2r2W ,

where p is the force per unit area, K1 is the Winkler foundation stiffness, K2 is a constant showing the effect

of the shear interactions of the vertical elements, r2 is the Laplace operator in X and Y . This reaction,

however, is only compressive and occurs only where W is positive. Let F ðX ; Y Þ be the stress function for the

stress resultants defined by Nx ¼ F ;yy , Ny ¼ F ;xx and Nxy ¼ �F ;xy , where a comma denotes partial differ-

entiation with respect to the corresponding coordinates.

From Reissner–Mindlin plate theory considering the first order shear deformation effect, including the

plate-foundation interaction and thermal effects, the nonlinear differential equations of such plates in the
von K�arm�an sense are
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Fig. 1. A rectangular plate subjected to a transverse partially distributed load.
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eL11ðWxÞ þ eL12ðWyÞ þ HðW Þ½K1W � K2r2W � þ r2M
T ¼ eLðW ; F Þ þ q ð1Þ

eL21ðWxÞ þ eL22ðWyÞ þ eL23ðW Þ þ ðMTÞ;x ¼ 0 ð2Þ

eL31ðWxÞ þ eL32ðWyÞ þ eL33ðW Þ þ ðMTÞ;y ¼ 0 ð3Þ

r4F þ ð1� mÞr2N
T ¼ � 1

2
EteLðW ;W Þ ð4Þ
where HðW Þ is the contact function and takes care of the tensionless character of the foundation
HðW Þ ¼ 1 W > 0

0 W 6 0

�
ð5Þ
and the linear operators eLijð Þ and the nonlinear operator eLð Þ are defined by
eL11ð Þ ¼ �D o

oX
r2

eL12ð Þ ¼ �D o

oY
r2

eL21ð Þ ¼ j2Gt � D
o2

oX 2

�
þ 1� m

2

o2

oY 2

�
eL23ð Þ ¼ j2Gt

o

oXeL31ð Þ ¼ eL22ð Þ ¼ � 1þ m
2

D
o2

oXoYeL32ð Þ ¼ j2Gt � D
1� m
2

o2

oX 2

�
þ o2

oY 2

�
eL33ð Þ ¼ j2Gt

o

oYeLð Þ ¼ o2

oX 2

o2

oY 2
� 2

o2

oXoY
o2

oXoY
þ o2

oY 2

o2

oX 2

r2ð Þ ¼ o2

oX 2
þ o2

oY 2
; r4ð Þ ¼ o4

oX 4
þ 2

o4

oX 2oY 2
þ o4

oY 4

ð6Þ



4812 H.-S. Shen, L. Yu / International Journal of Solids and Structures 41 (2004) 4809–4825
in which D is flexural rigidity and D ¼ Et3=12ð1� m2Þ. E is Young’s modulus, G is the shear modulus and m
is Poisson’s ratio. Also j2 is the shear factor, which accounts for the nonuniformity of the shear strain

distribution through the plate thickness. For Reissner plate theory j2 ¼ 5=6, while for Mindlin plate theory

j2 ¼ p2=12.
If all four edges of the plate are free, the boundary conditions are

X ¼ 	a=2:
Mx ¼ D
oWx

oX

�
þ m

oWy

oY

�
�M

T ¼ 0 ð7aÞ

Mxy ¼
1� m
2

D
oWx

oY

�
þ oWy

oX

�
¼ 0 ð7bÞ

Qx ¼ j2Gt Wx

�
þ oW

oX

�
¼ 0 ð7cÞ

Z þb=2

�b=2
Nx dY þ rxbt ¼ 0 ð7dÞ
Y ¼ 	b=2:
My ¼ D m
oWx

oX

�
þ oWy

oY

�
�M

T ¼ 0 ð7eÞ

Mxy ¼
1� m
2

D
oWx

oY

�
þ oWy

oX

�
¼ 0 ð7fÞ

Qy ¼ j2Gt Wy

�
þ oW

oY

�
¼ 0 ð7gÞ

Z þa=2

�a=2
Ny dX þ ryat ¼ 0 ð7hÞ
where rx and ry are the average compressive stresses in the X - and Y -directions, Mx and My are the bending

moments per unit width and per unit length of the plate, and Qx and Qy are the transverse shear forces,

respectively.

For the initially heated plate, it is assumed that rx ¼ ry ¼ 0 and the temperature field is assumed to be a

linear variation through the plate thickness, i.e.
T ðX ; Y ; ZÞ ¼ T0 1

�
þ C

Z
t

�
ð8Þ
in which T0 and C denote the temperature amplitude and gradient respectively.

The thermal forces and moments caused by the temperature field T ðX ; Y ; ZÞ are defined by
ðNT
;M

TÞ ¼ Ea
1� m

Z þt=2

�t=2
ð1; ZÞT ðX ; Y ; ZÞdZ ð9Þ
where a is the thermal expansion coefficient of a plate.
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Because of Eqs. (8) and (9), it is noted that the temperature does not vary in X and Y , then the thermal

forces N
T
and moments M

T
are constants, so that the boundary conditions of Eqs. (7a) and (7e) are

nonhomogeneous, but in Eqs. (1)–(4) r2M
T ¼ r2N

T ¼ ðMTÞ;x ¼ ðMTÞ;y ¼ 0.

For the initially compressed plate, it is assumed that N
T ¼ M

T ¼ 0, now the boundary conditions of Eqs.

(7a) and (7e) become homogeneous.
3. Analytical method and solution procedure

Before proceeding, it is convenient first to define the following dimensionless quantities for such plates

(in which the alternative forms k1 and k2 are not needed until the numerical examples are considered)
x ¼ pX=a; y ¼ pY =b; b ¼ a=b; c ¼ p2D=a2j2Gt; ðm1; m2Þ ¼ ð1� m; 1þ mÞ=2
ðW ;W 
Þ ¼ ðW ;W


Þ½12ð1� m2Þ�1=2=t; ðWx;WyÞ ¼ ðWx;WyÞa½12ð1� m2Þ�1=2=pt
F ¼ F =D; ðQx;QyÞ ¼ ðQx;QyÞa½12ð1� m2Þ�1=2=pj2Gt2

ðMx;My ;Mxy ;MTÞ ¼ ðMx;My ;Mxy ;M
TÞa2½12ð1� m2Þ�1=2=p2Dt

ðK1; k1Þ ¼ ða4; b4ÞK1=p
4D; ðK2; k2Þ ¼ ða2; b2ÞK2=p

2D

kq ¼ qa4½12ð1� m2Þ�1=2=p4Dt; ðkx; kyÞ ¼ ðrxb2; rya2Þt=4p2D

ð10Þ
Eqs. (1)–(4) may then be written in dimensionless form as
L11ðWxÞ þ L12ðWyÞ þ HðW Þ½K1W � K2r
2
W � ¼ b2LðW ; F Þ þ kq ð11Þ

L21ðWxÞ þ L22ðWyÞ þ L23ðW Þ ¼ 0 ð12Þ

L31ðWxÞ þ L32ðWyÞ þ L33ðW Þ ¼ 0 ð13Þ

r4
F ¼ � 1

2
b2LðW ;W Þ ð14Þ
where
L11ð Þ ¼ � o

ox
r2

L12ð Þ ¼ �b
o

oy
r2

L21ð Þ ¼ 1� c
o2

ox2

�
þ m1b

2 o2

oy2

�
L23ð Þ ¼

o

ox

L31ð Þ ¼ L22ð Þ ¼ �m2cb
o2

oxoy

L32ð Þ ¼ 1� c m1
o2

ox2

�
þ b2 o2

oy2

�
L33ð Þ ¼ b

o

oy
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Lð Þ ¼ o2

ox2
o2

oy2
� 2

o2

oxoy
o2

oxoy
þ o2

oy2
o2

ox2

r2ð Þ ¼ o2

ox2
þ b2 o2

oy2
; r4ð Þ ¼ o4

ox4
þ 2b2 o4

ox2oy2
þ b4 o4

oy4

ð15Þ
The boundary conditions of Eq. (7) become

x ¼ 	p=2:
Mx ¼
oWx

ox

�
þ mb

oWy

oy

�
�MT ¼ 0 ðfor initially heated plateÞ ð16aÞ

Mx ¼
oWx

ox

�
þ mb

oWy

oy

�
¼ 0 ðfor initially compressed plateÞ ð16a0 Þ

Mxy ¼ m1 b
oWx

oy

�
þ oWy

ox

�
¼ 0 ð16bÞ

Qx ¼ Wx

�
þ oW

ox

�
¼ 0 ð16cÞ

1

p

Z þp=2

�p=2
b2 o

2F
oy2

dy ¼ 0 ðfor initially heated plateÞ ð16dÞ

1

p

Z þp=2

�p=2
b2 o

2F
oy2

dy þ 4kxb
2 ¼ 0 ðfor initially compressed plateÞ ð16d0 Þ
y ¼ 	p=2:
My ¼ m
oWx

ox

�
þ b

oWy

oy

�
�MT ¼ 0 ðfor initially heated plateÞ ð16eÞ

My ¼ m
oWx

ox

�
þ b

oWy

oy

�
¼ 0 ðfor initially compressed plateÞ ð16e0 Þ

Mxy ¼ m1 b
oWx

oy

�
þ oWy

ox

�
¼ 0 ð16fÞ

Qy ¼ Wy

�
þ b

oW
oy

�
¼ 0 ð16gÞ

1

p

Z þp=2

�p=2

o2F
ox2

dx ¼ 0 ðfor initially heated plateÞ ð16hÞ

1

p

Z þp=2

�p=2

o2F
ox2

dxþ 4ky ¼ 0 ðfor initially compressed plateÞ ð16h0 Þ
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Applying Eqs. (11)–(16), the nonlinear bending of an initially heated or initially compressed Reissner–

Mindlin plate with four free edges subjected to combined loading and resting on a tensionless elastic

foundation of the Pasternak-type is now determined by a two step perturbation technique, for which the

small perturbation parameter has no physical meaning at the first step, and is then replaced by a dimen-
sionless transverse pressure (or central deflection) at the second step. The essence of this procedure, in the

present case, is to assume that
W ðx; y; eÞ ¼
X
j¼1

ejwjðx; yÞ; Wxðx; y; eÞ ¼
X
j¼1

ejwxjðx; yÞ

Wyðx; y; eÞ ¼
X
j¼1

ejwy|ðx; yÞ; F ðx; y; eÞ ¼
X
j¼0

ejfjðx; yÞ; kq ¼
X
j¼1

ejkj
ð17Þ
where e is a small perturbation parameter.
In order to satisfy free boundary conditions, the first term of wjðx; yÞ is assumed to have the form
w1ðx; yÞ ¼ Að1Þ
00 þ Að1Þ

20 cos 2mxþ Að1Þ
02 cos 2ny þ Að1Þ

22 cos 2mx cos 2ny þ að1Þ1 x2 þ að1Þ2 y2 ð18Þ

in which, Að1Þ

00 , A
ð1Þ
20 , etc. are unknown coefficients.

All the necessary steps of the solution methodology are described below, but the detailed expressions are

not shown, since they may be found in Shen (1998a, 2002).

First, the assumed solution form of Eq. (17) is substituted into Eqs. (11)–(14) to obtain a set of per-

turbation equations by collecting the terms of the same order of e.
Then, Eq. (18) is used to solve these perturbation equations of each order step by step. At each step the

amplitudes of the components of wjðx; yÞ, wxjðx; yÞ, wyjðx; yÞ and fjðx; yÞ can be determined, e.g. Að1Þ
20 , A

ð1Þ
02 ,

Bð2Þ
20 , B

ð2Þ
02 , etc., except for A

ðjÞ
00 ðj ¼ 1; 3Þ and which along with kj can be determined by the Galerkin pro-

cedure. As a result, up to third-order asymptotic solutions are obtained as
W ¼ e½Að1Þ
00 þ Að1Þ

20 cos 2mxþ Að1Þ
02 cos 2ny þ Að1Þ

22 cos 2mx cos 2ny þ að1Þ1 x2 þ að1Þ2 y2�

þ e3½Að3Þ
00 þ Að3Þ

20 cos 2mxþ Að3Þ
02 cos 2ny þ Að3Þ

22 cos 2mx cos 2ny þ Að3Þ
24 cos 2mx cos 4ny

þ Að3Þ
26 cos 2mx cos 6ny þ Að3Þ

40 cos 4mxþ Að3Þ
42 cos 4mx cos 2ny þ Að3Þ

44 cos 4mx cos 4ny

þ Að3Þ
46 cos 4mx cos 6ny þ Að3Þ

04 cos 4ny þ Að3Þ
60 cos 6mxþ Að3Þ

62 cos 6mx cos 2ny

þ Að3Þ
64 cos 6mx cos 4ny þ Að3Þ

06 cos 6ny þ að3Þ1 x2 þ að3Þ2 y2� þOðe4Þ ð19Þ

Wx ¼ e½Cð1Þ
20 sin 2mxþ Cð1Þ

22 sin 2mx cos 2ny þ cð1Þ1 x� þ e3½Cð3Þ
20 sin 2mxþ Cð3Þ

22 sin 2mx cos 2ny

þ Cð3Þ
24 sin 2mx cos 4ny þ Cð3Þ

26 sin 2mx cos 6ny þ Cð3Þ
40 sin 4mxþ Cð3Þ

42 sin 4mx cos 2ny

þ Cð3Þ
44 sin 4mx cos 4ny þ Cð3Þ

46 sin 4mx cos 6ny þ Cð3Þ
60 sin 6mxþ Cð3Þ

62 sin 6mx cos 2ny

þ Cð3Þ
64 sin 6mx cos 4ny þ cð3Þ1 x� þOðe4Þ ð20Þ

Wy ¼ e½Dð1Þ
02 sin 2ny þ Dð1Þ

22 cos 2mx sin 2ny þ dð1Þ2 y� þ e3½Dð3Þ
02 sin 2ny þ Dð3Þ

22 cos 2mx sin 2ny

þ Dð3Þ
24 cos 2mx sin 4ny þ Dð3Þ

26 cos 2mx sin 6ny þ Dð3Þ
42 cos 4mx sin 2ny þ Dð3Þ

44 cos 4mx sin 4ny

þ Dð3Þ
46 cos 4mx sin 6ny þ Dð3Þ

04 sin 4ny þ Dð3Þ
62 cos 6mx sin 2ny þ Dð3Þ

64 cos 6mx sin 4ny

þ Dð3Þ
06 sin 6ny þ dð3Þ1 y� þOðe4Þ ð21Þ
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F ¼ �Bð0Þ
00

y2

2
� bð0Þ00

x2

2
þ e2

"
� Bð2Þ

00 y2
�

� p2

4

�2

� bð2Þ00 x2
�

� p2

4

�2

þ Bð2Þ
20 cos 2mxþ Bð2Þ

02 cos 2ny

þ Bð2Þ
22 cos 2mx cos 2ny þ Bð2Þ

40 cos 4mxþ Bð2Þ
04 cos 4ny þ Bð2Þ

24 cos 2mx cos 4ny

þBð2Þ
42 cos 4mx cos 2ny

#
þOðe4Þ ð22Þ
and
kq ¼ ek1 þ e3k3 þOðe4Þ ð23Þ
It is because the isotropic plate with bending/stretching coupling missing, the terms in e0 and e2 in Eqs. (19)–

(21), and the terms in e1 and e3 in Eq. (22) are all zero-valued. Note that in Eq. (22) Bð0Þ
00 and bð0Þ00 come from

initial in-plane uniform compressive stresses, and for initially heated problem they are all zero-valued. All

coefficients in Eqs. (19)–(23) are related and can be expressed in terms of Að1Þ
22 , for example, Að1Þ

00 ¼ a100A
ð1Þ
22 ,

Að3Þ
00 ¼ a300A

ð1Þ
22 (with a100, a300, etc. defined in Appendix A), so that Eqs. (19) and (23) can be re-written as
W ¼ W ð1Þðx; yÞðAð1Þ
22 eÞ þ W ð3Þðx; yÞðAð1Þ

22 eÞ3 þ � � � ð24Þ
and
kq ¼ kð1Þ
q ðAð1Þ

22 eÞ þ kð3Þ
q ðAð1Þ

22 eÞ3 þ � � � ð25Þ
In Eqs. (24) and (25) ðAð2Þ
22 eÞ is taken as the second perturbation parameter relating to the dimensionless

transverse pressure. From Eqs. (24) and (25) the load-central deflection relationship can be written as
W
t
¼ Að1Þ

W

qa4

Dt

� �
þ Að3Þ

W

qa4

Dt

� �3

þ � � � ð26Þ
Similarly, the load-bending moment relationships can be written as
Mxa2

Dt
¼ Að0Þ

Mx þ Að1Þ
Mx

qa4

Dt

� �
þ Að3Þ

Mx

qa4

Dt

� �3

þ � � � ð27Þ

Mya2

Dt
¼ Að0Þ

My þ Að1Þ
My

qa4

Dt

� �
þ Að3Þ

My

qa4

Dt

� �3

þ � � � ð28Þ
Note that Að0Þ
Mx and Að0Þ

My are initial bending moments induced by temperature field and for initially

compressed problem they are all zero-valued. In Eqs. (26)–(28), all coefficients are given in detail in

Appendix A.

Eqs. (26)–(28) can be employed to obtain numerical results for the load-deflection and load-bending
moment curves of an initially heated or initially compressed Reissner–Mindlin plate with four free edges

subjected to combined loading and resting on tensionless elastic foundations. Since the foundation reacts in

compression only, a possible lift-off region is expected. The solution procedure is complicated and therefore

an iterative procedure is necessary to solve this strong nonlinear problem. In applying the contact condi-

tion, the plate area is discretized into a series of grids, and the contact status is assessed at each grid

location. From Eq. (A.2) in Appendix A one can see some terms, e.g. C02, C22, g3i0, g30j, g3ij, etc., involving
K1 and K2 and the contact function H ½W ðxg; ygÞ�, where W ðxg; ygÞ is the deflection at the grid coordinate

ðxg; ygÞ and summation is carried out over all grid coordinates by using the Gauss–Legendre quadrature
procedure. It is found that an acceptable accuracy can be obtained by taking into account 10 · 10 points,

which is employed in the next section.
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4. Numerical examples and discussions

Numerical results are presented in this section for initially compressed or initially heated moderately

thick plates with four free edges subjected to a central patch load ða1 ¼ b1 ¼ 0Þ and resting on a tensionless
elastic foundation of the Pasternak-type. The results for conventional elastic foundations are obtained as

comparators in the manner described previously and detailed further in Shen (1998b, 1999). A computer

program was developed for this purpose and many examples have been solved numerically, including the

following.

The accuracy and effectiveness of the present method for linear and nonlinear bending analyses of

moderately thick plates resting on a Winkler elastic foundation were examined by many comparison studies

given in Shen (1998b, 1999), e.g. the deflections and bending moments along the X -axis for a moderately

thick plate subjected to a central patch load were compared with the Fourier series solutions and finite-
difference method results given by Henwood et al. (1982) and the superposition method solutions given by

Shi et al. (1994), and the load-deflection curves for a moderately thick plates subjected to transverse par-

tially distributed loads were compared with the classical plate theory solutions of Qu and Liang (1995).

These comparisons show that the results from present method are in good agreement with existing results

for the case of conventional elastic foundations. In addition, the central deflections and bending moments

for moderately thick plates subjected to a central patch load and resting on both Winkler and tensionless

elastic foundations (with K1 ¼ 50 MN/m3) are calculated and compared well in Table 1 with the Fourier

series solutions obtained by Bu and Yan (1991), and boundary element method results of Xiao (2001). The
computing data adopted here are a ¼ b ¼ 4:0 m, t ¼ 0:2 m, a2 ¼ b2 ¼ 0:25 m, and q0 ¼ 3:0 MN/m2. These

results are based on the small deflection analysis and they confirm that the accuracy of the present analysis.

As a second example, the central deflections and bending moments for moderately thick plates with three

different kinds of material properties subjected to a central patch load and resting on Winkler elastic

foundations (with K1 ¼ 20, 50 and 80 MN/m2) are calculated and compared in Table 2 with the Fourier

Series solutions obtained by Yettram et al. (1984). The computing data adopted here are a ¼ b ¼ 1:0 m,

t ¼ 0:05 m, a2 ¼ b2 ¼ 0:25 m, and q0 ¼ 1:0 MN/m2. It can be seen that the present results are lower than

those of Yettram et al. (1984). The differences between these two solutions may be partly caused by different
forms of deflection W chosen by different authors. In Table 2 results for tensionless elastic foundations are

also given for direct comparison.

A parametric study was undertaken for a moderately thick square plate with b=t ¼ 20. The transverse

central patch load with a2=a ¼ b2=b ¼ 0:25 is applied on the top surface of the plate. Typical results are

shown in Figs. 2–7. In all these figures W =t and Mxb2=Et4 mean the dimensionless forms of, respectively,

central deflection and bending moment of the plate, i.e. at the point ðX ; Y Þ ¼ ð0; 0Þ. For all of the examples,

E ¼ 14:0 GPa, m ¼ 0:15, a ¼ 1:0
 10�5/�C, and the transverse shear correction factor was taken to be

j2 ¼ 5=6.
Fig. 2 gives the load-deflection and load-bending moment curves for a moderately thick square

plate subjected to a central patch load alone and resting on a tensionless elastic foundation of either
Table 1

Comparisons of central deflections and bending moments of partially loaded square plates (a ¼ b ¼ 400 cm, t ¼ 20 cm,

a2=a ¼ b2=b ¼ 0:0625, q ¼ 300 N/cm2, E ¼ 2:6
 106 N/cm2, m ¼ 0:15, K1 ¼ 50 N/cm3)

Winkler foundation Tensionless foundation

W (cm) Mx (·105 N cm) W (cm) Mx (·105 N cm)

Present 0.333981 0.106934 0.357982 0.118892

Bu and Yan (1991) 0.337788 0.116690 0.341402 0.118305

Xiao (2001) 0.341456 0.117297 0.346120 0.119732



Table 2

Comparisons of central deflections and bending moments of partially loaded square plates (a ¼ b ¼ 1 m, t ¼ 0:05 m,

a2=a ¼ b2 ¼ b ¼ 0:25, q ¼ 1 MN/m2)

K1 Winkler foundation Tensionless foundation

W (m) Mx (MNm/m) W (m) Mx (MNm/m)

E¼ 3.0 GPa, m¼ 0.3

20 Yettram et al. (1984) 0.0280 0.0120

Present 0.0265 0.0102 0.0270 0.0105

50 Yettram et al. (1984) 0.0145 0.00778

Present 0.0133 0.00602 0.0144 0.00688

80 Yettram et al. (1984) 0.0102 0.00590

Present 0.00895 0.00425 0.00991 0.00495

E¼ 6.85 GPa, m¼ 0.25

20 Yettram et al. (1984) 0.0219 0.0150

Present 0.0213 0.0135 0.0213 0.0135

50 Yettram et al. (1984) 0.0117 0.0105

Present 0.0111 0.00934 0.0113 0.0973

80 Yettram et al. (1984) 0.0084 0.0089

Present 0.0078 0.00711 0.00823 0.00782

E¼ 14.0 GPa, m¼ 0.15

20 Yettram et al. (1984) 0.0183 0.0163

Present 0.0179 0.0146 0.0179 0.0146

50 Yettram et al. (1984) 0.0100 0.0131

Present 0.00923 0.0114 0.00927 0.0115

80 Yettram et al. (1984) 0.00690 0.0111

Present 0.00658 0.00927 0.00671 0.00963

(a) load-deflection (b) load-bending moment 
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Fig. 2. Nonlinear bending behavior of a Reissner–Mindlin plate subjected to a central patch load resting on tensionless and con-

ventional foundations.
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Pasternak-type or Winkler-type. The stiffnesses are ðk1; k2Þ ¼ ð10:0; 1:0Þ for Pasternak-type elastic foun-

dation and ðk1; k2Þ ¼ ð10:0; 0:0Þ for Winkler-type elastic foundation. It can be seen that the plate will have
stronger nonlinear behavior than its counterparts when it is supported by a tensionless elastic foundation.

Fig. 3 gives the load-deflection and load-bending moment curves for a moderately thick square plate

subjected to a central patch load combined with initial compressive load Px resting on tensionless elastic

foundations. The dimensionless uniaxial compression is defined by Px=Pcr ¼ 0:25, in which Pcr is the critical
buckling load for the plate under uniaxial compression in the X -direction, and can be determined using the

method described in Shen (2001) and Li (2000, 2001). Then Fig. 4 shows the effect of biaxial load ratio a0



Fig. 3. Effect of initial uniaxial compression on the nonlinear bending behavior of a Reissner–Mindlin plate resting on conventional

and tensionless foundations.

Fig. 4. Effect of initial biaxial compression on the nonlinear bending behavior of a Reissner–Mindlin plate resting on conventional and

tensionless foundations.
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(¼ ry=rx ¼ 0:5) on the nonlinear bending behavior of an initially compressed plate subjected to a central
patch load resting on tensionless elastic foundations. It can be seen that for the initially compressed plate

the load-deflection curve changes from convex to concave as the biaxial load ratio a0 increases and the

nonlinear effect becomes more pronounced as the applied load is increased.

Fig. 5 gives the load-deflection and load-bending moment curves for a moderately thick square plate

subjected to a central patch load combined with uniform temperature rise T0 ¼ 30 �C and resting on

tensionless elastic foundations. Then Fig. 6 shows the effect of thermal bending stress (C ¼ �2:0) on the

nonlinear bending behavior of an initially heated plate subjected to a central patch load resting on ten-

sionless elastic foundations. As expected, these results show that in the case of low-valued uniform tem-
perature rise the thermal stresses only have a small effect on the nonlinear bending behavior of the plate,

even though the reaction of the foundation is in compression only.

Vertical deflections of the same plate subjected to a central patch load alone and under different load

levels (q
 ¼ 50, 100 and 200) are shown in Fig. 7. In Fig. 7 the dimensionless applied load is defined by

q
 ¼ qb4=Et4. The results show that at the plate central area the downward deflections of the plate resting

on tensionless foundations are larger than those of the plate resting on conventional foundations when the

applied load q
 ¼ 50 and 100. Also the difference between these two curves becomes negligible at the plate



Fig. 6. Effect of thermal bending stress on the nonlinear bending behavior of a Reissner–Mindlin plate resting on conventional and

tensionless foundations.

Fig. 7. Vertical deflections of a Reissner–Mindlin plate subjected to a central patch load resting on tensionless and conventional

foundations.

Fig. 5. Effect of initial uniform temperature rise on the nonlinear bending behavior of a Reissner–Mindlin plate resting on conventional

and tensionless foundations.
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edge region. In contrast, for the case of the applied load q
 ¼ 200, these two curves are very close, con-
firming the contact region expands as the applied load increases.
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5. Conclusions

Nonlinear bending analysis of an initially heated or initially compressed Reissner–Mindlin plate with four

free edges subjected to transverse partially distributed loads and resting on a tensionless elastic foundation
has been presented by using an analytical–numerical method. The advantage of the present method is that

the solution is in an explicit form which is easy to program in computing full nonlinear load-deflection and

load-bending moment curves without any prior assumption for the shape of the contact region. The new

finding is that the nonlinear bending responses for the conventional and tensionless elastic foundation are

quite different, and in the case of lift-off the stronger nonlinear response could be seen. The numerical results

show that, due to the large deflection of the plate, the contact region expands as the applied load increases.

It is hoped that the results presented will contribute to a better understanding of the nonlinear bending

behavior of Reissner–Mindlin plates with four free edges subjected to thermomechanical loads and resting
on tensionless elastic foundations.
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Appendix A

In Eqs. (26)–(28)
Að1Þ
W ¼ C1W ð1Þðx; yÞ; Að3Þ

W ¼ C3W ð3Þðx; yÞ � C2W ð1Þðx; yÞ
Að1Þ
Mx ¼ p2C1M ð1Þ

x ðx; yÞ; Að3Þ
Mx ¼ p2½C3M ð3Þ

x ðx; yÞ � C2M ð1Þ
x ðx; yÞ�

Að1Þ
My ¼ p2C1M ð1Þ

y ðx; yÞ; Að3Þ
My ¼ p2½C3M ð3Þ

y ðx; yÞ � C2M ð1Þ
y ðx; yÞ�

W ð1Þðx; yÞ ¼ a100 þ a120 cos 2mxþ a102 cos 2ny þ cos 2mx cos 2ny þ a11x2 þ a12y2

W ð3Þðx; yÞ ¼ a300 þ a320 cos 2mxþ a302 cos 2ny þ a322 cos 2mx cos 2ny
þ a324 cos 2mx cos 4ny þ a326 cos 2mx cos 6ny þ a340 cos 4mx
þ a342 cos 4mx cos 2ny þ a344 cos 4mx cos 4ny þ a346 cos 4mx cos 6ny
þ a304 cos 4ny þ a360 cos 6mxþ a362 cos 6mx cos 2ny þ a364 cos 6mx cos 4ny

þ a306 cos 6ny þ a31x2 þ a32y2

M ð1Þ
x ðx; yÞ ¼ b120 cos 2mxþ b102 cos 2ny þ b122 cos 2mx cos 2ny þ 2a11 þ 2mn2b2a12

M ð3Þ
x ðx; yÞ ¼ b320 cos 2mxþ b302 cos 2ny þ b322 cos 2mx cos 2ny

þ b324 cos 2mx cos 4ny þ b326 cos 2mx cos 6ny þ b340 cos 4mx
þ b342 cos 4mx cos 2ny þ b344 cos 4mx cos 4ny þ b346 cos 4mx cos 6ny
þ b304 cos 4ny þ b360 cos 6mxþ b362 cos 6mx cos 2ny þ b364 cos 6mx cos 4ny

þ b306 cos 6ny þ 2a31 þ 2mn2b2a32

M ð1Þ
y ðx; yÞ ¼ c120 cos 2mxþ c102 cos 2ny þ c122 cos 2mx cos 2ny þ 2ma11 þ 2n2b2a12

M ð3Þ
y ðx; yÞ ¼ c320 cos 2mxþ c302 cos 2ny þ c322 cos 2mx cos 2ny

þ c324 cos 2mx cos 4ny þ c326 cos 2mx cos 6ny þ c340 cos 4mx
þ c342 cos 4mx cos 2ny þ c344 cos 4mx cos 4ny þ c346 cos 4mx cos 6ny
þ c304 cos 4ny þ c360 cos 6mxþ c362 cos 6mx cos 2ny þ c364 cos 6mx cos 4ny

þ c306 cos 6ny þ 2ma31 þ 2n2b2a32

ðA:1Þ
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where (with all other symbols as defined in Shen (1998b, 1999))
C02 ¼
16m4

1þ 4cm2
a120

�
� 1

m2
a11 cosmp

�
a120 þ

16n4b4

1þ 4cn2b2
a102

�
� 1

n2
a12 cos np

�
a102

þ 8ðm2 þ n2b2Þg22 þ
XN
g¼0

CðNÞ
g H ½W ðxg; ygÞ�½K1C021 þ K2C022�

C22 ¼ g320a2
320 þ g302a2

302 þ
1

2
g322a2

322 þ g340a2
340 þ g304a2

304 þ g360a2
360 þ g306a2

306

� 1

m2
g320a320 cosmp

�
þ 1

4m2
g340a340 þ

1

9m2
g360a360 cosmp

�
a31

� 1

n2
g302a302 cos np

�
þ 1

4n2
g304a304 þ

1

9n2
g306a306 cos np

�
a32

þ C320a320 þ C302a302 þ
1

2
C322a322 þ C340a340 þ C304a304 þ C360a360 þ C306a306

� 1

m2
C320 cosmp

�
þ 1

4m2
C340 þ

1

9m2
C360 cosmp

�
a31

� 1

n2
C302 cos np

�
þ 1

4n2
C304 þ

1

9n2
C306 cos np

�
a32

þ 4b2

1þ b2
a11a12

�
� a120

m2

n2
cos np

�
þ a102

n2b2

m2
cosmp

�
a322 �

1

8

m2

n2

�
þ n2b2

m2

�
a322

� a320

m2

n2
cos np � a302

n2b2

m2
cosmp þ a31

1

n2

�
þ a32

b2

m2

�
cosðmþ nÞp

� a302

1

n2
cos np

�
þ a304

1

4n2
þ a306

1

9n2
cos np

�
a11

� a320

b2

m2
cosmp

�
þ a340

1

4m2
þ a306

b2

9m2
cosmp

�
a12 þ

p4

90
ða11a32 þ a12a31b

2Þ
�

þ
XN
g¼0

CðNÞ
g H ½W ðxg; ygÞ�½K1C221 þ K2C222� þ C224

a120 ¼ � 1

mm2
ðmm2 þ n2b2Þð1þ 4cm2Þg22 cos np

a102 ¼ � 1

mn2b2
ðm2 þ mn2b2Þð1þ 4cn2b2Þg22 cosmp

a11 ¼
2

m
n2b2g22 cosðmþ nÞp; a12 ¼

2

mb2
m2g22 cosðmþ nÞp

g3i0 ¼
i4m4

1þ ci2m2
þ
XN
g¼0

CðNÞ
g H ½W ðxg; ygÞ�½K1 þ K2i2m2� � C310 ði ¼ 2; 4; 6Þ

g30j ¼
j4n4b4

1þ cj2n2b2
þ
XN
g¼0

CðNÞ
g H ½W ðxg; ygÞ�½K1 þ K2j2n2b

2� � C301 ðj ¼ 2; 4; 6Þ

g3ij ¼ ði2m2 þ j2n2b2Þ2gij þ
XN
g¼0

CðNÞ
g H ½W ðxg; ygÞ�½K1 þ K2ði2m2 þ j2n2b2Þ� � C311 ði; j ¼ 2; 4; 6Þ

gij ¼
1

1þ cði2m2 þ j2n2b2Þ
ði; j ¼ 2; 4; 6Þ
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a324 ¼ � 1

g324
6m4a120

"
þ 4m4a102a11 þ

4m2n2b2

ðm2 þ n2b2Þ2
ðn2b2a11 þ m2b2a12 þ 2m2n2b2a120a102Þa102

þ 4m2n2b2

ðm2 þ 4n2b2Þ2
ð4n2b2a11 þ m2b2a12Þa102 þ

18m4n4b4

ð4m2 þ n2b2Þ2
a120

#

a326 ¼ � 1

g326
m4

"
þ 4m4n4b4

ðm2 þ 4n2b2Þ2
a2
102

#

a342 ¼ � 1

g342
6n4b4a102

"
þ 4n2b4a120a12 þ

4m2n2b2

ðm2 þ n2b2Þ2
ðn2b2a11 þ m2b2a12 þ 2m2n2b2a120a102Þa120

þ 4m2n2b2

ð4m2 þ n2b2Þ2
ðn2b2a11 þ 4m2b2a12Þa120 þ

18m4n4b4

ðm2 þ 4n2b2Þ2
a102

#

a344 ¼ � 16

g344

m4n4b4

ðm2 þ 4n2b2Þ2

"
þ m4n4b4

ð4m2 þ n2b2Þ2

#
a120a102

a346 ¼ � 1

g346

2m4n4b4

ðm2 þ 4n2b2Þ2
a102

a362 ¼ � 1

g362
n4b4

"
þ 4m4n4b4

ð4m2 þ n2b2Þ2
a2
120

#

a364 ¼ � 1

g364

2m4n4b4

ð4m2 þ n2b2Þ2
a120

a340 ¼ � 1þ 16cm2

4mm2
ð4mm2
�

þ n2b2Þg42a342 cos np þ 4ðmm2 þ n2b2Þg44a344

þ ð4mm2 þ 9n2b2Þg46a346 cos np
�

a304 ¼ � 1þ 16cn2b2

4mn2b2
ðm2
�

þ 4mn2b2Þg24a324 cosmp þ 4ðm2 þ mn2b2Þg44a344

þ ð9m2 þ 4mn2b2Þg64a364 cosmp
�
;

a360 ¼ � 1þ 36cm2

9mm2
ð9mm2
�

þ n2b2Þg62a362 cos np þ ð9mm2 þ 4n2b2Þg64a364

�
;

a306 ¼ � 1þ 36cn2b2

9mn2b2
ðm2
�

þ 9mn2b2Þg26a326 cosmp þ ð4m2 þ 9mn2b2Þg46a346

�
a320 ¼ � 1þ 4cm2

mm2
ðmm2
�

þ n2b2Þg22a322 cos np þ ðmm2 þ 4n2b2Þg24a324

þ ðmm2 þ 9n2b2Þg26a326 cos np
�

a302 ¼ � 1þ 4cn2b2

mn2b2
ðm2
�

þ mn2b2Þg22a322 cosmp þ ð4m2 þ mn2b2Þg42a342

þ ð9m2 þ mn2b2Þg62a362 cosmp
�
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a31 ¼ � 1

2ð1� m2Þ
4m2

1þ 4cm2
a320 cosmp

��
þ 16m2

1þ 16cm2
a340 þ

36m2

1þ 36cm2
a360 cosmp

�
� m

4n2b2

1þ 4cn2b2
a302 cos np

�
þ 16n2b2

1þ 16cn2b2
a304 þ

36n2b2

1þ 36cn2b2
a306 cos np

��
;

a32 ¼ � 1

2ð1� m2Þb2

4n2b2

1þ 4cn2b2
a302 cos np

��
þ 16n2b2

1þ 16cn2b2
a304 þ

36n2b2

1þ 36cn2b2
a306 cos np

�
� m

4m2

1þ 4cm2
a320 cosmp

�
þ 16m2

1þ 16cm2
a340 þ

36m2

1þ 36cm2
a360 cosmp

��
a300 ¼

6

p2

C22

C211K1

þ p2

12
ða31 þ a32Þ � 2

K2

K1

ða31 þ b2a32Þ

ðA:2Þ
and for initially heated problem
Að0Þ
Mx ¼ Að0Þ

My ¼ �ð1þ mÞ a
t


 �2

aT0C; C224 ¼ C310 ¼ C301 ¼ C311 ¼ 0

C1 ¼
1

6p2

C01

C02

; C2 ¼
1� m2

18p6

C22

C21

C01

C02

� �4

; C3 ¼
1� m2

18p6

C01

C02

� �3

a100 ¼
6

p2

C02

C011K1

þ p2

12
ða11 þ a12Þ � 2

K2

K1

ða11 þ b2a12Þ

ðA:3Þ
and for initially compressed problem
Að0Þ
Mx ¼ Að0Þ

My ¼ 0

C1 ¼
1

6p2

C01

B02

; C2 ¼
1� m2

18p6

C22

C21

C01

B02

� �4

; C3 ¼
1� m2

18p6

C01

B02

� �3

; B02 ¼ C02 1

�
� B01

B011

Px
Pcr

�
C224 ¼

p2

3
ða31 þ a32Þðm2a31 þ a0n2b

2a32Þ
C02

B011

� �
Px
Pcr

� �
; C310 ¼ i2m2 C02

B011

� �
Px
Pcr

� �
C301 ¼ a0j2n2b

2 C02

B011

� �
Px
Pcr

� �
; C311 ¼ ði2m2 þ a0j2n2b

2Þ C02

B011

� �
Px
Pcr

� �
a100 ¼

6

p2

B02

C011K1

þ p2

12
ða11 þ a12Þ � 2

K2

K1

ða11 þ b2a12Þ þ
2

K1

ða11 þ a0b
2a12Þ

C02

B011

Px
Pcr

ðA:4Þ
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