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Abstract

A nonlinear bending analysis is presented for a Reissner—Mindlin plate with four free edges subjected to thermo-
mechanical loads and resting on a tensionless elastic foundation of the Pasternak-type. The mechanical loads consist of
transverse partially distributed loads and in-plane edge loads while the temperature field is assumed to exhibit a linear
variation through the thickness of the plate. The material properties are assumed to be independent of temperature. The
two cases of initially compressed plates and of initially heated plates are considered. The formulations are based on
Reissner—-Mindlin first order shear deformation plate theory and include the plate-foundation interaction and thermal
effects. A set of admissible functions, which satisfy both geometrical and natural boundary conditions, are developed
for the nonlinear bending analysis of moderately thick plates with four free edges. A two step perturbation technique is
employed in conjunction with this set of admissible functions to determine the load-deflection and load-bending mo-
ment curves. An iterative scheme is developed to obtain numerical results without using any prior assumption for the
shape of the contact region. The numerical illustrations concern moderately thick plates with four free edges resting on
tensionless elastic foundations of the Pasternak-type, from which results for conventional elastic foundations are ob-
tained as comparators. The results show that the nonlinear bending responses for the conventional and tensionless
elastic foundation are quite different.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The nonlinear bending response of initially heated or initially compressed Reissner—-Mindlin plates with
four free edges subjected to transverse partially distributed loads and resting on a two-parameter elastic
foundation was the subject of recent investigations (Shen, 1998b, 1999). In these studies the foundation is
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assumed to be an attached foundation in which the plate cannot separate from the elastic medium, this
means the foundation reacts in compression as well as in tension. However, the lift-off problem of a plate is
much more plausible, when the edge of the plate is free.

Many linear bending studies for thin and moderately thick, circular and rectangular plates resting on a
tensionless elastic foundation have been performed by Weitsman (1970), Villaggio (1983), Celep (1988a,b),
Li and Dempsey (1988), Mishra and Chakrabarti (1996), Akbarov and Kocatiirk (1997), Xiao (2001) and
Silva et al. (2001). The solution method required to determine the response of such plates on tensionless
foundations is complicated because the contact region is not known at the outset. All the aforementioned
studies focused on the cases of linear bending problem and they concluded that the contact region remains
constant and is independent of the load level. In contrast, Khathlan (1994) studied the large deflections of
circular plates resting on a tensionless elastic foundation of the Winkler-type and concluded that as the
transverse load increases the contact area tends to expand until full contact is reached. Hong et al. (1999)
studied the large deflections of axisymmetric shells and circular plates subjected to a central concentrated
load and resting on a tensionless elastic foundation. However, in these studies the formulations are based
on the Kirchhoff-Love hypothesis and therefore the transverse shear deformations are not accounted for.

The present study extends the previous works (Shen, 1998b, 1999) to the case of moderately thick
rectangular plates with four free edges resting on a tensionless elastic foundation of the Pasternak-type. The
nonlinear bending behaviors of initially compressed or initially heated plates are re-examined. The
mechanical loads consist of transverse partially distributed loads and in-plane edge loads while the tem-
perature field is assumed to exhibit a linear variation through the thickness of the plate. The material
properties are assumed to be independent of temperature. The formulations are based on Reissner—Mindlin
first order shear deformation plate theory and include the plate-foundation interaction and thermal effects.
A set of admissible functions, which satisfy both geometrical and natural boundary conditions, are
developed for the nonlinear bending analysis of moderately thick plates with four free edges. A two step
perturbation technique is employed in conjunction with this set of admissible functions to determine the
load-deflection and load-bending moment curves. An iterative scheme is developed to obtain numerical
results without using any prior assumption for the shape of the contact region.

2. Analytical formulations

Consider a rectangular thick plate with four free edges of length a, width b and thickness ¢, which rests
on a tensionless elastic foundation. Let X, ¥ and Z be a set of coordinates with X and Y axes located in the
middle plane of the plate and the Z-axis pointing downwards. The origin of the coordinate system is located
at the center of the plate in the middle plane. The plate is exposed to a stationary temperature field
T(X,Y,Z) and/or transverse partially distributed load ¢ in the shaded region, as shown in Fig. 1, combined
with in-plane edge loads P, in the X-direction and P, in the Y-direction. The components of displacement of
the middle surface along the X, Y and Z axes are designated by U, V and W. ¥, and ¥, are the mid-plane
rotations of the normals about the ¥ and X axes, respectively. The foundation is represented by a two-
parameter foundation model, that is, the reaction of the foundation is assumed to be p = K, W — K,V*W,
where p is the force per unit area, K is the Winkler foundation stiffness, K, is a constant showing the effect
of the shear interactions of the vertical elements, V2 is the Laplace operator in X and Y. This reaction,
however, is only compressive and occurs only where ¥ is positive. Let F (X, Y) be the stress function for the
stress resultants defined by N, =F ,,, N,=F,, and N,, = —F ,,, where a comma denotes partial differ-
entiation with respect to the corresponding coordinates.

From Reissner—Mindlin plate theory considering the first order shear deformation effect, including the
plate-foundation interaction and thermal effects, the nonlinear differential equations of such plates in the
von Kdrman sense are
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Fig. 1. A rectangular plate subjected to a transverse partially distributed load.
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where H(W) is the contact function and takes care of the tensionless character of the foundation
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and the linear operators Z,-j( ) and the nonlinear operator L( ) are defined by
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in which D is flexural rigidity and D = E#*/12(1 — v?). E is Young’s modulus, G is the shear modulus and v
is Poisson’s ratio. Also x” is the shear factor, which accounts for the nonuniformity of the shear strain
distribution through the plate thickness. For Reissner plate theory x?> = 5/6, while for Mindlin plate theory

K> =n*/12.
If all four edges of the plate are free, the boundary conditions are
X = +a/2:
o,  oV,\ 1
— 1—v (0¥, 0¥,
(T T o
— — W
— 2 O
QxKGt<‘Px+6X) 0 (7c)
+b/2
/ N,dY +o,bt =0 (7d)
~b/2
Y =+b/2:
_ oV, o7\ 1
M},D(V 6X+6Y>M —0 (76)
— 1—v oY, ov¥
M, = Dl —=+—-2)= f
v = ( or T ox ) 0 (76)
— — oW
Qy = K2Gt(qjy+ﬁ> =0 (7g)
+a/2_
N,dX +o,at =0 (7h)
—a/2

where o, and o, are the average compressive stresses in the X- and Y-directions, M, and M, are the bending
moments per unit width and per unit length of the plate, and O, and Q, are the transverse shear forces,
respectively.

For the initially heated plate, it is assumed that o, = ¢, = 0 and the temperature field is assumed to be a
linear variation through the plate thickness, i.e.

T(X,Y,Z)=T, {1 + Cﬂ (8)

in which 7; and C denote the temperature amplitude and gradient respectively.
The thermal forces and moments caused by the temperature field 7(X, ¥, Z) are defined by

T —T EO{ +t/2
W=7 [ uaryze ©)
—t

where o is the thermal expansion coefficient of a plate.
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Because of Eqgs. (8) and (9), it is noted that the temperature does not vary in X and Y, then the thermal
forces N' and moments M are constants, so that the boundary conditions of Egs. (7a) and (7e¢) are
nonhomogeneous, but in Egs. (1)—(4) VZA_lf = VN = (VT)YX = (HT)‘y =0.

For the initially compressed plate, it is assumed that N M = 0, now the boundary conditions of Egs.
(7a) and (7¢) become homogeneous.

3. Analytical method and solution procedure

Before proceeding, it is convenient first to define the following dimensionless quantities for such plates
(in which the alternative forms k; and k, are not needed until the numerical examples are considered)

x=7nX/a, y=nY/b, B=al/b, y=n’D/a*K*Gt, (vi,v2)=(1—v,1+v)/2
W, W) =W, WH2(1 =)' /t, (P, ¥,) = (P, P,)a[12(1 — )] /e

F= F/Dv (vaQy) = ( x?@y)a[lz(l - VZ)]I/Z/TCKZGI‘Z

o (10)
(M, My, My, M™) = (M, M,, M, M )a*[12(1 —v*)]'? /n* Dt
(Kl N kl) = (614, b4)1?1/7'C4D, (Kz, kz) = (Clz, bz)Ez/TCZD
dy = qa*[12(1 — W2 /2*Dr, (A, A) = (a.b*,0,a*)t/4n*D
Egs. (1)-(4) may then be written in dimensionless form as
Li (W) + Lo(W,) + HW) KW — KN W) = BL(W,F) + 4, (11)
Loy (Yy) + Loa(W,) + Los(W) =0 (12)
L31('I’x)+l‘32('l"y)+L33(W) :O (13)
=4 1,
VF ==LV, W) (14)
where
0 =2
L [,
u() axv
0 =2
L — —f—
12() ﬁayv

0
L() =3
62
Lyi( ) =Ln( )= —yp oy
S
Ly()=1 —”/(Vl@*'ﬁ 6_)/2)
0
Ly( ) =p—
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The boundary conditions of Eq. (7) become
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oY oY,
M, = ( B —V> =0 (for initially compressed plate)
Ox oy
oy, oY,
, = — ] =0
My v1( dy + Ox >

ox

1[0 F
— / B2 >dy =0 (for initially heated plate)

T /2
1 (72 L OF
- / ﬁ dy + 4/, =0 (for initially compressed plate)
—n/2
y==+n/2:
v b4
M, = va ~ + ﬂa 2 ) —M" =0 (for initially heated plate)
Ox dy
oY, L
M, = ( » ) =0 (for initially compressed plate)
oy, oY,
M., = T2 =
v =M ( dy + Ox > 0
ow
0, = (‘P + B ) =0
1 [ F L
— / —~—5dx =0 (for initially heated plate)
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Applying Egs. (11)—(16), the nonlinear bending of an initially heated or initially compressed Reissner—
Mindlin plate with four free edges subjected to combined loading and resting on a tensionless elastic
foundation of the Pasternak-type is now determined by a two step perturbation technique, for which the
small perturbation parameter has no physical meaning at the first step, and is then replaced by a dimen-
sionless transverse pressure (or central deflection) at the second step. The essence of this procedure, in the
present case, is to assume that

W(x,y,e¢ Zs’wjxy (X, e Ze’lﬁ”xy

. . (17)
(.8 Zs’lﬁ”xy F(x,y,¢) Za’fjxy /Lq:ZE//Lj
=1
where ¢ is a small perturbation parameter.
In order to satisfy free boundary conditions, the first term of w;(x,y) is assumed to have the form
wi(x,y) = AS) + AS) cos 2mx + AL cos 2ny + AS) cos 2mx cos 2ny + a\x* + aly? (18)

in which, A(()i)), A;)), etc. are unknown coefficients.

All the necessary steps of the solution methodology are described below, but the detailed expressions are
not shown, since they may be found in Shen (1998a, 2002).

First, the assumed solution form of Eq. (17) is substituted into Egs. (11)-(14) to obtain a set of per-
turbation equations by collecting the terms of the same order of e.

Then, Eq. (18) is used to solve these perturbation equations of each order step by step. At each step the
amplitudes of the components of w;(x,»), ¥;(x,¥), ¥,;(x,y) and f;(x,y) can be determined, e.g. A20 , Aé?,
B(zf)), BE)Z), etc., except for A00 (j=1,3) and which along with 4; can be determined by the Galerkin pro-
cedure. As a result up to third- order asymptotic solutions are obtained as

W = g[aly) + A4S cos 2mx + A cos 2ny + 45 cos 2mx cos 2ny + al)x* + aly?]

+ & [Ag? + Ag,) cos 2mx + A(()SZ) cos2ny + A(232> cos 2mx cos 2ny + Agi) cos 2mx cos 4ny

+ A(Z’? cos 2mx cos 6ny + Aﬁ)) cos 4mx + Afé) cos 4mx cos 2ny + Aﬁ) cos 4mx cos 4ny

+ Afé) cos 4mx cos bny + A(()i) cosdny + Ag) cos bmx + A?Z) cos 6mx cos 2ny

+ AS) cos 6mx cos dny + AS) cos 6ny + alVx® + iy + O(e*) (19)
¥, = ¢[CY}) sin 2mx + C sin 2mx cos 2ny + c\")x] + &*[CL)) sin 2mx + C) sin 2mx cos 2ny

+ Cgi) sin 2mx cos 4ny + Cg? sin 2mx cos 6ny + C40 sin 4mx + C42 sin4mx cos 2ny

+ Cﬁ) sin 4mx cos 4ny + C‘(é) sin 4mx cos 6ny + Céf)) sin 6mx + Céz) sin 6mx cos 2ny

+ C) sin 6mx cos 4ny + Vx| + O(&*) (20)
Y, = s[D(()lz) sin2ny + D;lz) cos 2mx sin 2ny + dz(l) y] + & [foz) sin 2ny + D(z? cos 2mx sin 2ny

+ D(zf cos 2mx sin4ny + Dfé) cos 2mx sin bny + sz) cos4mx sin2ny + Dﬁ cos 4mx sin 4ny

+ Dfé) cos4mx sin bny + D(()i) sin4ny + Dg cos 6mx sin 2ny + Dg) cos 6mx sin 4ny

+ D) sin 6ny + d”y] + O(&*) (21)
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+B'Y) cosdmx cos2ny| + O(&*) (22)

and
by = &h1 + &5+ O(e) (23)

It is because the isotropic plate with bending/stretching coupling missing, the terms in &° and &* in Egs. (19)-
(21), and the terms in &' and & in Eq. (22) are all zero-valued. Note that in Eq. (22) Bg())) and b((]? come from
initial in-plane uniform compressive stresses, and for initially heated problem they are all zero Valued All
coefficients in Egs. (19)-(23) are related and can be expressed in terms of 453, for example, A\ = o004y,
A(()O) = oc300A22) (with oyg9, o300, €tc. defined in Appendix A), so that Egs. (19) and (23) can be re-written as

W= w0 (e, ) (5)e) + WO (x, ) (45)e)* + - - (24)
and
Dy = 1V (A5e) + 20 (A6 + - - (25)

In Egs. (24) and (25) ( » s) is taken as the second perturbation parameter relating to the dimensionless
transverse pressure. From Egs. (24) and (25) the load-central deflection relationship can be written as

= 3
W a(qa o (94
Z—4 1~ A Sl . 26
t v ( i) T\ Do) T (26)
Similarly, the load-bending moment relationships can be written as
M.@ ga’ ga’
=49 1+ 4 A e 27
qa ga*\’
— 49 4 40 A0 (1< . )8
Dt o+ < Dt ) + o)t (28)

Note that Aﬁ% and Aﬁgy) are initial bending moments induced by temperature field and for initially
compressed problem they are all zero-valued. In Eqgs. (26)-(28), all coefficients are given in detail in
Appendix A.

Egs. (26)—(28) can be employed to obtain numerical results for the load-deflection and load-bending
moment curves of an initially heated or initially compressed Reissner—Mindlin plate with four free edges
subjected to combined loading and resting on tensionless elastic foundations. Since the foundation reacts in
compression only, a possible lift-off region is expected. The solution procedure is complicated and therefore
an iterative procedure is necessary to solve this strong nonlinear problem. In applying the contact condi-
tion, the plate area is discretized into a series of grids, and the contact status is assessed at each grid
location. From Eq. (A.2) in Appendix A one can see some terms, e.g. Cy, Ca2, €30, 830)> &3i> €tC., involving
K, and K, and the contact function H[W (x,,y,)], where W(x,,y,) is the deflection at the grid coordinate
(x¢,¥,) and summation is carried out over all grid coordinates by using the Gauss-Legendre quadrature
procedure. It is found that an acceptable accuracy can be obtained by taking into account 10X 10 points,
which is employed in the next section.
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4. Numerical examples and discussions

Numerical results are presented in this section for initially compressed or initially heated moderately
thick plates with four free edges subjected to a central patch load (¢; = b; = 0) and resting on a tensionless
elastic foundation of the Pasternak-type. The results for conventional elastic foundations are obtained as
comparators in the manner described previously and detailed further in Shen (1998b, 1999). A computer
program was developed for this purpose and many examples have been solved numerically, including the
following.

The accuracy and effectiveness of the present method for linear and nonlinear bending analyses of
moderately thick plates resting on a Winkler elastic foundation were examined by many comparison studies
given in Shen (1998b, 1999), e.g. the deflections and bending moments along the X-axis for a moderately
thick plate subjected to a central patch load were compared with the Fourier series solutions and finite-
difference method results given by Henwood et al. (1982) and the superposition method solutions given by
Shi et al. (1994), and the load-deflection curves for a moderately thick plates subjected to transverse par-
tially distributed loads were compared with the classical plate theory solutions of Qu and Liang (1995).
These comparisons show that the results from present method are in good agreement with existing results
for the case of conventional elastic foundations. In addition, the central deflections and bending moments
for moderately thick plates subjected to a central patch load and resting on both Winkler and tensionless
elastic foundations (with K; = 50 MN/m?®) are calculated and compared well in Table 1 with the Fourier
series solutions obtained by Bu and Yan (1991), and boundary element method results of Xiao (2001). The
computing data adopted here are a = b =4.0m, t = 0.2 m, a, = b, = 0.25 m, and ¢, = 3.0 MN/m?. These
results are based on the small deflection analysis and they confirm that the accuracy of the present analysis.
As a second example, the central deflections and bending moments for moderately thick plates with three
different kinds of material properties subjected to a central patch load and resting on Winkler elastic
foundations (with K; = 20, 50 and 80 MN/m?) are calculated and compared in Table 2 with the Fourier
Series solutions obtained by Yettram et al. (1984). The computing data adopted here are a = b = 1.0 m,
t=0.05m, a, = b, = 0.25 m, and g = 1.0 MN/m®. It can be seen that the present results are lower than
those of Yettram et al. (1984). The differences between these two solutions may be partly caused by different
forms of deflection W chosen by different authors. In Table 2 results for tensionless elastic foundations are
also given for direct comparison.

A parametric study was undertaken for a moderately thick square plate with /¢ = 20. The transverse
central patch load with a,/a = b,/b = 0.25 is applied on the top surface of the plate. Typical results are
shown in Figs. 2-7. In all these figures W/t and M,b*/Et* mean the dimensionless forms of, respectively,
central deflection and bending moment of the plate, i.e. at the point (X, ¥) = (0,0). For all of the examples,
E =14.0 GPa, v=0.15, o = 1.0 x 107°/°C, and the transverse shear correction factor was taken to be
k* =5/6.

Fig. 2 gives the load-deflection and load-bending moment curves for a moderately thick square
plate subjected to a central patch load alone and resting on a tensionless elastic foundation of either

Table 1
Comparisons of central deflections and bending moments of partially loaded square plates (a =b =400 cm, =20 cm,
ay/a = by/b = 0.0625, ¢ = 300 N/cm?, E = 2.6 x 10° N/cm?, v = 0.15, K; = 50 N/cm?)

Winkler foundation Tensionless foundation

W (cm) M, (x10° Ncm) W (cm) M, (x10° Ncm)
Present 0.333981 0.106934 0.357982 0.118892
Bu and Yan (1991) 0.337788 0.116690 0.341402 0.118305

Xiao (2001) 0.341456 0.117297 0.346120 0.119732
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Table 2
Comparisons of central deflections and bending moments of partially loaded square plates (a=b=1 m, t=0.05 m,
ay/a=by =b=0.25g=1 MN/m?)

K, Winkler foundation Tensionless foundation
W (m) M. (MNm/m) W (m) M, (MNm/m)
E=3.0 GPa, v=0.3
20 Yettram et al. (1984) 0.0280 0.0120
Present 0.0265 0.0102 0.0270 0.0105
50 Yettram et al. (1984) 0.0145 0.00778
Present 0.0133 0.00602 0.0144 0.00688
80 Yettram et al. (1984) 0.0102 0.00590
Present 0.00895 0.00425 0.00991 0.00495
E=6.85 GPa, v=0.25
20 Yettram et al. (1984) 0.0219 0.0150
Present 0.0213 0.0135 0.0213 0.0135
50 Yettram et al. (1984) 0.0117 0.0105
Present 0.0111 0.00934 0.0113 0.0973
80 Yettram et al. (1984) 0.0084 0.0089
Present 0.0078 0.00711 0.00823 0.00782
E=14.0 GPa, v=0.15
20 Yettram et al. (1984) 0.0183 0.0163
Present 0.0179 0.0146 0.0179 0.0146
50 Yettram et al. (1984) 0.0100 0.0131
Present 0.00923 0.0114 0.00927 0.0115
80 Yettram et al. (1984) 0.00690 0.0111
Present 0.00658 0.00927 0.00671 0.00963
15 10
FFFF plate ) E'j:';g' :/?: 00 =
a0 o o a0z
10} 1 -
- S w o6}
1= /,::::"_/ ~ o 2 1 (k. k) = (100, 1.0)
7 El)=10010 o k) =100,
05t 2: (k, k) = (10.0,0.0) : (k, k) =(10.0,0)
__tensionless foundation 02h //’\1 2 —_ tensionless foundation
,,,,,, conventional foundation ------ conventional foundation
00 5% 100 150 200 %% % 100 150 200
ab /EL? ab EL?
(a) load-deflection (b) load-bending moment

Fig. 2. Nonlinear bending behavior of a Reissner—Mindlin plate subjected to a central patch load resting on tensionless and con-
ventional foundations.

Pasternak-type or Winkler-type. The stiffnesses are (k;,4») = (10.0,1.0) for Pasternak-type elastic foun-
dation and (k, k,) = (10.0,0.0) for Winkler-type elastic foundation. It can be seen that the plate will have
stronger nonlinear behavior than its counterparts when it is supported by a tensionless elastic foundation.

Fig. 3 gives the load-deflection and load-bending moment curves for a moderately thick square plate
subjected to a central patch load combined with initial compressive load P, resting on tensionless elastic
foundations. The dimensionless uniaxial compression is defined by P,/P.. = 0.25, in which P,, is the critical
buckling load for the plate under uniaxial compression in the X-direction, and can be determined using the
method described in Shen (2001) and Li (2000, 2001). Then Fig. 4 shows the effect of biaxial load ratio o
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Fig. 3. Effect of initial uniaxial compression on the nonlinear bending behavior of a Reissner-Mindlin plate resting on conventional
and tensionless foundations.
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Fig. 4. Effect of initial biaxial compression on the nonlinear bending behavior of a Reissner—Mindlin plate resting on conventional and
tensionless foundations.

(= 0,/0, = 0.5) on the nonlinear bending behavior of an initially compressed plate subjected to a central
patch load resting on tensionless elastic foundations. It can be seen that for the initially compressed plate
the load-deflection curve changes from convex to concave as the biaxial load ratio o increases and the
nonlinear effect becomes more pronounced as the applied load is increased.

Fig. 5 gives the load-deflection and load-bending moment curves for a moderately thick square plate
subjected to a central patch load combined with uniform temperature rise 7, = 30 °C and resting on
tensionless elastic foundations. Then Fig. 6 shows the effect of thermal bending stress (C = —2.0) on the
nonlinear bending behavior of an initially heated plate subjected to a central patch load resting on ten-
sionless elastic foundations. As expected, these results show that in the case of low-valued uniform tem-
perature rise the thermal stresses only have a small effect on the nonlinear bending behavior of the plate,
even though the reaction of the foundation is in compression only.

Vertical deflections of the same plate subjected to a central patch load alone and under different load
levels (¢* = 50, 100 and 200) are shown in Fig. 7. In Fig. 7 the dimensionless applied load is defined by
q* = qb*/Et*. The results show that at the plate central area the downward deflections of the plate resting
on tensionless foundations are larger than those of the plate resting on conventional foundations when the
applied load ¢* = 50 and 100. Also the difference between these two curves becomes negligible at the plate
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Fig. 5. Effect of initial uniform temperature rise on the nonlinear bending behavior of a Reissner—Mindlin plate resting on conventional
and tensionless foundations.
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Fig. 6. Effect of thermal bending stress on the nonlinear bending behavior of a Reissner-Mindlin plate resting on conventional and
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Fig. 7. Vertical deflections of a Reissner-Mindlin plate subjected to a central patch load resting on tensionless and conventional

foundations.

edge region. In contrast, for the case of the applied load ¢* = 200, these two curves are very close, con-
firming the contact region expands as the applied load increases.
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5. Conclusions

Nonlinear bending analysis of an initially heated or initially compressed Reissner—Mindlin plate with four
free edges subjected to transverse partially distributed loads and resting on a tensionless elastic foundation
has been presented by using an analytical-numerical method. The advantage of the present method is that
the solution is in an explicit form which is easy to program in computing full nonlinear load-deflection and
load-bending moment curves without any prior assumption for the shape of the contact region. The new
finding is that the nonlinear bending responses for the conventional and tensionless elastic foundation are
quite different, and in the case of lift-off the stronger nonlinear response could be seen. The numerical results
show that, due to the large deflection of the plate, the contact region expands as the applied load increases.

It is hoped that the results presented will contribute to a better understanding of the nonlinear bending
behavior of Reissner—Mindlin plates with four free edges subjected to thermomechanical loads and resting
on tensionless elastic foundations.
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Appendix A

In Egs. (26)—(28)
Ay =cwWixy), Ay = O ,y) — I i(x,y)
Al = nZCIMi (09), A =2 [CMP (x,y) = CM (x,)]
Ay =7 CMPV(x,y), Ay = w2 [CGMP (x,y) — MY (x,y)]
w) (x,9) = 0t100 + %120 COS 2mx + 1105 COS 21y + €08 2mix €08 2ny + oy 1 x> + opp)”
WO (x, ) = az00 + o320 COS 2mx + 0130, COS 21y + 33, COS 2mx cos 2ny
~+ 0304 COS 2mx COS 4ny + 0326 COS 2mx COS O6ny + 349 COS 4mx
+ 01342 cOs 4mx cOs 2ny + 0344 COS 4mx cos 4ny + o346 COS 4mx cos 6ny
~+ 0304 COS 4ny + 0360 COS 6mx + 0367 COS 6mx COS 2ny + 364 COS 6mx coOs 4ny
+ 0306 COS 61y + o131X% + 032)°
MW (x,) = Biag €08 2mx + Bi4s €OS 21y + P15, €O 2mx €08 2my + 201y + 2va® 2oy,
M (x, ) = Bysg €08 2mx + Pag, €08 2y + Py cOS 2mx cOS 2ny (A1)
+ P4 €OS 2mx cOs4ny + 356 COS 2mx cos 6ny + P4y cOs 4mx
+ P4z cOs 4mx cos 2ny + P4y cOS dmx cosdny + f344 cOs 4mx cos 6ny
~+ Proa cOs4ny + P340 €OS 6mx + P4, COS 6mx cos 2ny + P34 cOSs 6mx cos4ny
+ P COS 61y + 20131 + 2vn? oz
D(x, ) = 7120 €OS 2mix + 7,0 COS 211y + 7125 €OS 2mx €0 2ny + 2voy; + 2n* oy,

=

)
M}(f) (X, ) = 7320 COS 2mX + 7305 COS 21y + 735, COS 2mx COS 2ny

~+ V324 COS 2mx cOS 4ny + 7355 COS 2mx €O 6ny + Y34, COS 4mx

~+ V340 COS 4mix COS 21y + Y344 COS 4mx cOS 4ny + Y344 COs 4mx cos 6ny

~+ V304 COSAnY + V340 COS 6MX + Y36, COS Omx COS 21y + Y364 COS 6mx cOs 4ny
+ V305 €OS 61y + 2vozy + 2n% o3
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where (with all other symbols as defined in Shen (1998b, 1999))
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and for initially heated problem
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and for initially compressed problem
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